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Nomenclature

a = radius of the circular plate
b = central (maximum) lateral deflection of the circular

plate
C = ratio of �T=�cr
D = plate flexural rigidity, Et3=12�1 � �2�
E = Young’s modulus
Ncr = linear buckling load
Tr = radial tensile load per unit length (from r� 0 to r� a)

developed due to large lateral displacements
t = thickness of the circular plate
u = radial displacement
w = lateral displacement
� = ratio of the postbuckling to linear buckling load

parameters
�T = temperature rise from the stress-free temperature
"r, "� = in-plane strains
�cr = critical buckling load parameter
�PB = radial tensile load parameter
�T = radial tensile load parameter
� = Poisson’s ratio

Introduction

S TUDYof thermal postbuckling behavior of structural members
such as columns and plates subjected to thermal loads is

necessary in the design of aerospace structures, as one can use the
postbuckling load-carrying capacity for obtaining efficient designs.
It has also been shown through rigorous continuum and finite
element (FE) formulations in the works of Thompson and Hunt [1],
Dym [2], Rao and Raju [3,4], and Raju and Rao [5] that the thermal
postbuckling load-carrying capacity of the aforementioned structural
members is an order of magnitude higher than the load-carrying
capacity subjected to mechanical loads. Recently, this complex
thermal postbuckling phenomenon has been investigated through
intuitive formulations that give simple and reliable closed-form
solutions [6,7]. The intuitive formulations require the knowledge of

the linear buckling load and the tension developed because of the
large lateral deflections of these structural members. As shown in
[6,7], it is a simple and straightforward procedure to obtain the
tension for columns and square plates. However, when dealing with
the circular plates, the evaluation of the radial tension is not that
simple, but poses problems because of the explicit coupling in the
expression for the radial and circumferential strains due to the
radial displacement. Because of this coupling, some assumptions or
approximations have to bemade to evaluate the radial tension. In [8],
the assumption of zero Gaussian curvature of the deflected plate is
used to evaluate the radial tension, and this assumption gives
satisfactory postbuckling results in terms of the ratios of post-
buckling load parameter to the critical load parameter for clamped
circular plates, but it gives lower values for the simply supported
circular plates when compared with the solutions obtained by using
the FE method [5]. As a result, several approximate solutions have
been developed [9], and all of these approximations givemore or less
satisfactory results for the clamped circular plate, withwide variation
of results for the simply supported circular plate. In [9], in one of the
approximations, the tension obtained by using Berger’s approx-
imation [10] gives constant tension [11,12] and results in very high
values for the simply supported circular plate. The assumption that
the radial displacement varies linearly with the radial coordinate
gives more or less satisfactory results for both boundary conditions.
This anomalous behavior of the simple formulations developed for
the circular plate motivated the authors to further investigate its
thermal postbuckling behavior. In the proposed investigation,
Berger’s approximation [10] is used to evaluate the functional form
of radial displacement once the lateral displacement distribution
satisfying all the boundary conditions is known. The radial tension
derived by using Berger’s approximation [10] is treated as constant,
as in [11]. In the following section, the proposed formulation to
obtain the radial tension is briefly discussed, highlighting the basic
features.

Evaluation of Radial Tension

Consider a circular plate of radius a with edges immovable in the
radial direction (Fig. 1). If the plate is heated to a temperature �T
from the stress-free state, an equivalent uniform compressive edge
load Nr is developed. If the plate undergoes large deflections in the
postbuckling state, a radial tensile load is developed that, in general,
varies along the radius. The radial tension can be evaluated using the
nonlinear strain-displacement relations for the axisymmetric case,
neglecting the small initial geometric imperfections, given by
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Note that "r and "� are coupled by the radial displacement u, and this
makes the evaluation of tension parameter difficult for the circular
plates, which is not the situation in the case of square plates [7]. From
Eqs. (1) and (2), the radial tension per unit length is obtained as

Tr �
Et

�1 � �2� �"r � �"�� (3)

With the approximation proposed by Berger [10], the second strain
invariant "r � "� is neglected, which implies that "� 	 "r. Tr is
rewritten after substituting the expression for "r, as
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Following thework ofWah [11] given by Leissa [12], the tensile load
Tr is treated constant, and hence

dTr
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� 0 (5)
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For the chosen admissible function forw, the functional formofu can
be evaluated by integratingEq. (6) twice. The constants of integration
are obtained using the boundary conditions on radial displacement.

Once the functional form of u is known, a better approximation
for the radial tension Tr, which is still treated as constant, along the
radius is obtained as
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Note that in Eq. (7), to make Tr constant along the radius, the
integrated average of "� � �u=r�av is given by�

u

r

�
av

� "�av �
R
a
0
u
r
dr

a
(8)

Numerical Results and Discussion

From Eq. (7), the uniform radial edge tension Tr developed in the
circular plate with edges immovable in the radial direction can be
obtained by assuming suitable admissible functions for the lateral
displacement w. The value of Poisson’s ratio � is taken as 0.3 for
obtaining the numerical results. Both the simply supported and
clamped boundary conditions of the circular plate are considered.
The admissible function for the lateral displacement is taken in the
form summation of n functions, taking into account each term that
satisfies both the geometric and natural boundary conditions. Each
term considered for w is of the form given by Yamaki [13] and the
series taken for w is
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The values of �2i�1 and �2i�2 can be obtained from the boundary
conditions of the plate. The radial displacement u for each term of
the w series is obtained as explained in the previous section.

The proposed methodology to obtain the value of the tension
induced in the plate due to large axisymmetric lateral displacements
is given in previous section. The simple formulations to obtain the
thermal postbuckling [6,7] behavior is given in terms of �T and �cr as
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where the nondimensional parameters �T and �cr are defined as
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D
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Fig. 1 Circular plate showing coordinate system and lateral deflection

pattern.

Table 1 Variation of � for uniform thin circular plates with b=t

Simply supported Clamped

Present study Present study

b=t One term Two term Three term FEM [5] One term Two term Three term FEM [5]

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.0144 1.0175 1.0190 1.0182 1.0046 1.0050 1.0052 1.0052
0.2 1.0574 1.0703 1. 0706 1.0730 1.0184 1.0201 1.0208 1.0210
0.3 1.1293 1.1581 1.1711 1.1645 1.0415 1.0452 1.0468 1.0472
0.4 1.2299 1.2812 1.3043 1.2931 1.0738 1.0804 1.0832 1.0840
0.5 1.3593 1.4394 1.4755 1.4593 1.1154 1.1256 1.1300 1.1314
0.6 1.5173 1.6327 1.6847 1.6637 1.1662 1.1809 1.1873 1.1893
0.7 1.7042 1.8612 1.9320 1.9072 1.2262 1.2462 1.2549 1.2580
0.8 1.9198 2.1249 2.2174 2.1907 1.2955 1.3216 1.3330 1.3373
0.9 2.1641 2.4237 2.5407 2.5151 1.3740 1.4070 1.4215 1.4275
1.0 2.4372 2.7576 2.9022 2.8818 1.4617 1.5025 1.5203 1.5286
�cr 5.2000 4.1977 4.1978 4.1978 16.0000 14.7017 14.6820 14.6896
C 1.4372 1.7576 1.9022 1.8818 0.4617 0.5025 0.5203 0.5286
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The convergence on the number of terms used in the lateral deflection
distribution w is studied, which is achieved by choosing three terms
in the w distribution, based on the small percentage error for the
values of buckling load parameter and of � at the maximum value of
b0=t� 1:0. Thevalues of � andC� �T=�cr for the simply supported
and clamped boundary conditions of the circular plate with the
condition of radially immovable edges for different values ofb0=t are
given in Table 1. The results obtained by the present formulation and
those given by the FE method [5] match well, with a percentage
difference of�1:30 to 0.22%, as shown in the table. Please note that
in the present study, the emphasis is given on the evaluation of �T ,
whereas�cr values are obtained from the admissible functions chosen
for w or, alternatively, one can obtain the values of �cr from the
available literature [14,15].

Conclusions

The proposed simple formulation to obtain the thermal post-
buckling behavior of circular plates resolves the anomaly existing in
the similar formulations developed earlier. The results in terms of the
ratios of the postbuckling to the buckling load match very well with
those obtained by the FE method, irrespective of the edge boundary
conditions on the lateral displacements. With the very encouraging
results obtained from the present investigation, the authors propose
to work on prediction of the thermal postbuckling behavior of
circular plates with complicating effects such as the effect of elastic
foundation, moderately thick circular plates, circular plates with
elastic rotational edge restraints, etc.
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